Exam Quantum Field Theory
 January 26, 2023
 Start: 15:00h End: 17:00h

Wrate your name and student ID on each sheet.

INSTRUCTIONS. This is a closed-book and closed-notes exam You are allowed to bing one A4 page written by you, with useful formulas The exam duration is 2 hous There is a total of 9 points that you can collect.

NOTE. If you are not asked to Show your work, then an answer is sufficient However, you might always earn more ponts by answermg more extensively (but you can also lose pomts by adding wong explanations) If you ane asked to Show your work, then you should explain your reasoning and the mathematical steps of your derivation in full Use the official exam paper for all your work and ask for mose if you need

USEFUL FORMULAS

For the energy projectors for spin 1/2 Dirac fermions use the normalization without the factor $1 /(2 m)$.
$\sum_{r=1,2} u_{r}(\vec{p}) \bar{u}_{r}(\vec{p})=\not p+m$
$\sum_{r=1,2} v_{r}(\vec{p}) \bar{v}_{r}(\vec{p})=\not p-m$
$\left\{\gamma_{5}, \gamma^{\mu}\right\}=0, \quad\left(\gamma^{0}\right)^{2}=\mathbb{1}, \quad \gamma_{5}^{2}=\mathbb{1}, \quad \gamma_{5}^{\dagger}=\gamma_{5}, \quad \gamma^{0} \gamma^{\mu \dagger} \gamma^{0}=\gamma^{\mu}$
$\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu} \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}+g^{\mu \sigma} g^{\nu \rho}-g^{\mu \rho} g^{\nu \sigma}\right)$
$\gamma^{\mu} \gamma_{\mu}=4 \mathbb{1} \quad \gamma^{\mu} \not p \gamma_{\mu}=-2 \not p \quad \nmid k \not p \nmid k=2(p k) \nmid k-k^{2} \not p b$
$\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu}\right)=\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu} \gamma^{\nu}\right)=\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=0$

1. (3 points total) Consider the Lagıanglan density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}+\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi-M^{2} \Phi^{\dagger} \Phi-\frac{\lambda}{2} \varphi^{2} \Phi^{\dagger} \Phi \tag{1}
\end{equation*}
$$

that descubes the interaction between a real scalar field (φ) and a complex scalar field (Φ, Φ^{\dagger})
a) [2 points] Given the general formula for the 4 -pomt conelation function for φ

$$
G_{\varphi}^{(4)}\left(x_{1}, x_{2}, \iota_{3}, z_{4}\right)=\frac{1}{Z[\lambda=0]} \int \mathcal{D} \varphi \int \mathcal{D} \Phi^{\dagger} \mathcal{D} \Phi e^{\int d^{ \pm} \imath \mathcal{L}} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right)
$$

derive the leading order connected contırbutions to $G_{\varphi}^{(4)} \mathrm{m}$ coordmate space, 1 e the first non vanıshing connected contırbutions in the expansion in poweis of λ Show your work
b) [0.5 point] Diaw the Feynman diagıams conesponding to each controbution in coordinate space
c) $[0.5$ point $]$ Does the decay process $h \rightarrow H^{+} H^{-}$occur in this theory? h is the scalar boson associated to φ and $H^{ \pm}$are the charged scalar bosons associated to Φ, Φ^{\dagger} Show your work
2. (3 points total) Consıder the following Yukawa-like Lagrangıan density

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi-M^{2} \Phi^{\dagger} \Phi+\bar{\psi}(\imath \not \partial-m) \psi+f \bar{\psi} \psi \Phi^{\dagger} \Phi \tag{2}
\end{equation*}
$$

that describes the interaction between chatged spm-1/2 fermıns (ψ and $\bar{\psi}$) and charged scalaıs (Φ and Φ^{\dagger})
a) [1 point] Derive the equation of motion (EoM) for ψ and $\bar{\psi}$. Show your work
b) [1 point] Show that the cunent $J^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ is conserved, 1 e. $\partial_{\mu} J^{\mu}=0$ by employing the EoMs derived in a) Show your work
c) [0.5 point] What is the global symmetry of \mathcal{L} in eq (2) associated to the conservation of J^{μ} according to Noether's theorem? Wite the conesponding finite transformation of the fields
d) [0.5 point] Is there another conserved current, associated to which global symmetry?

Hint: Given two Grassmann varıables, η and ξ, ther dervatives satisfy-

$$
\frac{d}{d \eta}(\xi \eta)=-\frac{d}{d \eta}(\eta \xi)=-\xi
$$

Hint: The Euler-Lagrange equation (EoM) for a gener ic field ϕ reads:

$$
\partial_{\mu} \frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi}=\frac{\delta \mathcal{L}}{\delta \phi}
$$

Hint: The general formula for the conser vod curent associated to a one-gencrator global symmetry with parameter α reads

$$
J^{\mu}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi_{a}\right)} \frac{\delta \phi_{a}}{\delta \alpha}
$$

where a labels all possible (tianstorming) fields in \mathcal{L}

Note: The interaction in eq (2) is nomenor malizable in $d=4$ dimensions
3. (3 points total) Consider the scattering process $e^{+} e^{-} \rightarrow e^{+} e^{-}$in the Yukawa theory with Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} M^{2} \varphi^{2}+\bar{\psi}(\imath \not \partial-m) \psi+f \bar{\psi} \psi \varphi \tag{3}
\end{equation*}
$$

a) [1.5 point] Draw the Feynman dagıams contrıbuting to $e^{+} e^{-} \rightarrow e^{+} e^{-}$at tree level Indıcate which diagiam conesponds to the s-chamnel Do all thiee channels s, t, u occur at tree level? If not, what is the symmetry that forbids then occurrence? Show your work
b) [1.5 points] By applying the Feymman ıules, wite down the amplitudes for the dagiams diawn in part a) and the total amplitude

Hints: The Feymman rule for the vertex is if

